

Thermodynamics of Energy Conversion

Prof. Dr. Andreas ZÜTTEL

Assistant: Yasemen Kuddusi

EXERCISES 3

1) Calculate the max. oil price that corresponds to the economic benefit.

Course 2 Ex. 2 0.4 US\$/kWh Oil 11 kWh/kg · 156 l · 0.88 kg/l · 0.4 US\$ · 25% = 154 US\$/barrel

2) Calculate how long each resource lasts

Current energy demand: 16 TW

If each resource would cover the energy demand entirely:

Coal: 900 TWy i.e. 900 TWy/16 TW = 56 y

Oil: 240 TWy i.e. 240 TWy/16 TW = 15 y

Natural gas: 215 TWy i.e. 215 TWy/16 TW = 14 y

Uranium: 90 – 300 TWy i.e. 300 TWy/16 TW = 20 y

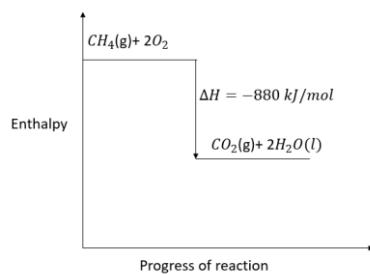
3) Calculate the production of biomass in energy per surface area and time.

250 dt dry mass per ha and year.

25t/10'000m²/year = 2.5 kg/m² per year

2.5 kg/m² · 2.0 kWh/kg per year = 5 kWh/m² per year

4) Construct an enthalpy diagram for the oxidation of methane ($\text{CH}_4 + 2 \text{O}_2 \rightarrow \text{CO}_2 + 2 \text{H}_2\text{O}$) and calculate the reaction enthalpy.


Enthalpy:

CH_4 : -75 kJ/mol

CO_2 : -393 kJ/mol

H_2O : -285 kJ/mol

$$\Delta H_R = -393 \text{ kJ} + 2 \cdot -285 \text{ kJ} - (-75 \text{ kJ}) = -880 \text{ kJ}$$

5) Estimate the temperature increase if all the fossil fuels are burned.

Fossil C emitted is 345 Gt C, corresponding to 1086 Gt CO_2 lead to 120 ppm increase of the CO_2 concentration in the atmosphere and a temperature increase of 0.8°C.

Proven reserves are approx. 1404 Gt C.

$$\Delta T = 0.8^\circ\text{C} / 345 \text{ Gt} \cdot 1404 \text{ Gt} = 3.3^\circ\text{C}$$